Package Biskit :: Module difflib_old :: Class Differ
[hide private]
[frames] | no frames]

Class Differ

source code

Differ is a class for comparing sequences of lines of text, and producing human-readable differences or deltas. Differ uses SequenceMatcher both to compare sequences of lines, and to compare sequences of characters within similar (near-matching) lines.

Each line of a Differ delta begins with a two-letter code:
   '- '    line unique to sequence 1
   '+ '    line unique to sequence 2
   '  '    line common to both sequences
   '? '    line not present in either input sequence

Lines beginning with '? ' attempt to guide the eye to intraline differences, and were not present in either input sequence. These lines can be confusing if the sequences contain tab characters.

Note that Differ makes no claim to produce a *minimal* diff. To the contrary, minimal diffs are often counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restricting synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer diff.

Example: Comparing two texts.

First we set up the texts, sequences of individual single-line strings ending with newlines (such sequences can also be obtained from the `readlines()` method of file-like objects):
>>> text1 = '''  1. Beautiful is better than ugly.
...   2. Explicit is better than implicit.
...   3. Simple is better than complex.
...   4. Complex is better than complicated.
... '''.splitlines(1)
>>> len(text1)
4
>>> text1[0][-1]
'\n'
>>> text2 = '''  1. Beautiful is better than ugly.
...   3.   Simple is better than complex.
...   4. Complicated is better than complex.
...   5. Flat is better than nested.
... '''.splitlines(1)
Next we instantiate a Differ object:
>>> d = Differ()

Note that when instantiating a Differ object we may pass functions to filter out line and character 'junk'. See Differ.__init__ for details.

Finally, we compare the two:
>>> result = list(d.compare(text1, text2))
'result' is a list of strings, so let's pretty-print it:
>>> from pprint import pprint as _pprint
>>> _pprint(result)
['    1. Beautiful is better than ugly.\n',
 '-   2. Explicit is better than implicit.\n',
 '-   3. Simple is better than complex.\n',
 '+   3.   Simple is better than complex.\n',
 '?     ++\n',
 '-   4. Complex is better than complicated.\n',
 '?            ^                     ---- ^\n',
 '+   4. Complicated is better than complex.\n',
 '?           ++++ ^                      ^\n',
 '+   5. Flat is better than nested.\n']
As a single multi-line string it looks like this:
>>> print ''.join(result),
1. Beautiful is better than ugly.
-   2. Explicit is better than implicit.
-   3. Simple is better than complex.
+   3.   Simple is better than complex.
?     ++
-   4. Complex is better than complicated.
?            ^                     ---- ^
+   4. Complicated is better than complex.
?           ++++ ^                      ^
+   5. Flat is better than nested.
Methods:
__init__(linejunk=None, charjunk=None)
    Construct a text differencer, with optional filters.

compare(a, b)
    Compare two sequences of lines; generate the resulting delta.


Instance Methods [hide private]
  __init__(self, linejunk=None, charjunk=None)
Construct a text differencer, with optional filters.
  compare(self, a, b)
Compare two sequences of lines; generate the resulting delta.
  _dump(self, tag, x, lo, hi)
Generate comparison results for a same-tagged range.
  _plain_replace(self, a, alo, ahi, b, blo, bhi)
  _fancy_replace(self, a, alo, ahi, b, blo, bhi)
When replacing one block of lines with another, search the blocks for *similar* lines; the best-matching pair (if any) is used as a synch point, and intraline difference marking is done on the similar pair.
  _fancy_helper(self, a, alo, ahi, b, blo, bhi)
  _qformat(self, aline, bline, atags, btags)
Format "?" output and deal with leading tabs.

Method Details [hide private]

__init__(self, linejunk=None, charjunk=None)
(Constructor)

source code 

Construct a text differencer, with optional filters.

The two optional keyword parameters are for filter functions:
  • `linejunk`: A function that should accept a single string argument, and return true iff the string is junk. The module-level function `IS_LINE_JUNK` may be used to filter out lines without visible characters, except for at most one splat ('#').
  • `charjunk`: A function that should accept a string of length 1. The module-level function `IS_CHARACTER_JUNK` may be used to filter out whitespace characters (a blank or tab; **note**: bad idea to include newline in this!).

compare(self, a, b)

source code 

Compare two sequences of lines; generate the resulting delta.

Each sequence must contain individual single-line strings ending with newlines. Such sequences can be obtained from the `readlines()` method of file-like objects. The delta generated also consists of newline- terminated strings, ready to be printed as-is via the writeline() method of a file-like object.

Example:
>>> print ''.join(Differ().compare('one\ntwo\nthree\n'.splitlines(1),
...                                'ore\ntree\nemu\n'.splitlines(1))),
- one
?  ^
+ ore
?  ^
- two
- three
?  -
+ tree
+ emu

_dump(self, tag, x, lo, hi)

source code 

Generate comparison results for a same-tagged range.

_plain_replace(self, a, alo, ahi, b, blo, bhi)

source code 

_fancy_replace(self, a, alo, ahi, b, blo, bhi)

source code 

When replacing one block of lines with another, search the blocks for *similar* lines; the best-matching pair (if any) is used as a synch point, and intraline difference marking is done on the similar pair. Lots of work, but often worth it.

Example:
>>> d = Differ()
>>> d._fancy_replace(['abcDefghiJkl\n'], 0, 1, ['abcdefGhijkl\n'], 0, 1)
>>> print ''.join(d.results),
- abcDefghiJkl
?    ^  ^  ^
+ abcdefGhijkl
?    ^  ^  ^

_fancy_helper(self, a, alo, ahi, b, blo, bhi)

source code 

_qformat(self, aline, bline, atags, btags)

source code 

Format "?" output and deal with leading tabs.

Example:
>>> d = Differ()
>>> d._qformat('\tabcDefghiJkl\n', '\t\tabcdefGhijkl\n',
...            '  ^ ^  ^      ', '+  ^ ^  ^      ')
>>> for line in d.results: print repr(line)
...
'- \tabcDefghiJkl\n'
'? \t ^ ^  ^\n'
'+ \t\tabcdefGhijkl\n'
'? \t  ^ ^  ^\n'