Home | Trees | Indices | Help |
|
---|
|
|
|||
| __init__(self, data, n_cluster, weight, seedx=0, seedy=0) | ||
| calc_membership_matrix(self, d2) | ||
| calc_cluster_center(self, msm) | ||
| updateDistanceMatrix(self) | ||
array, array, array
|
iterate(self,
centers) Returns distance to the centers, membership matrix, array of cenetrs |
||
float
|
error(self,
msm,
d2) Returns weighted error |
||
array('f')
|
create_membership_matrix(self) Create a random membership matrix. |
||
array('f')
|
go(self,
errorthreshold,
n_iterations=1e10,
nstep=10,
verbose=1) Start the cluestering. |
||
| clusterEntropy(self) | ||
| entropy(self) | ||
| nonFuzzyIndex(self) | ||
| clusterPartitionCoefficient(self) | ||
| partitionCoefficient(self) | ||
| getMembershipMatrix(self) | ||
| getClusterCenter(self) | ||
| entropySD(self) | ||
| standardDeviation(self) |
|
|
|
|
|
|
|
Create a random membership matrix.
|
Start the cluestering. Run until the error is below the error treshold or the max number of iterations have been run.
|
|
|
|
|
|
|
|
|
|
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0alpha3 on Tue May 1 22:34:55 2007 | http://epydoc.sourceforge.net |